CHAPTER 21

A Parallel Algorithm for Nonlinear Convection-Diffusion
Equations

Jeffrey S. Scroggs*

Abstract, A parallel algorithm for the efficient solution of nonlinear time dependent convection
diffusion equations with small parameter on the diffusion term will be presented. The method
is based on a physically motivated domain decomposition that is dictated by singular perturbation
analysis. The analysis is used to determine regions where certain reduced equations may be solved in
place of the full equation. Parallelism is evident at two levels. Domain decomposition and pipelining
provides parallelism at the highest level, and within each domain there is ample opportunity to
exploit parallelism. The method is suitable for the solution of problems arising in the simulation of
fluid dynamics. Experimental results for a nonlinear equation in two-dimensions will be presented.

1. INTRODUCTION. Inthis paper, an algorithm that is appropriate for solv-
ing nonlinear convection-diffusion equations in multiple dimensions is presented and
demonstrated. The method is appropriate for equations that exhibit strong nonlinear-
ities, such as the equations that arise when modeling fluids. The techniques presented
here are particularly well-suited in situations that require resolution of one or more
of the small scales. Such situations arise, for example in hypersonic fluid dynamics
and combustion problems where the chemistry depends on the viscous profiles. The
method is an asymptotics-induced numerical method suitable for parallel processors
which represent the state of the art in scientific computers, and is an extension of
the algorithm presented in [1, 2] to two dimensions. The contents of this paper con-
centrate on a description of the algorithm and computational results. Asymptotic
analysis gives qualitative and quantitative information as ¢ | 0, where € is the co-
efficient of the diffusion term. The numerical method presented here exploits the
analysis to determine an accurate solution for small positive €.
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The method incorporates an iterative technique to solve a related hyperbolic
equation. The iteration was shown to converge and demonstrated in [3]. A linearized
version of the original problem is solved in each step of the iteration. Computational
experiments show that in just a few steps of the iteration, the solution to the nonlinear
equation may be obtained. ‘

The decomposition into domains is accomplished using a symbiosis of numerics
and asymptotics. The asymptotic analysis identifies the regions where diffusion is
negligible. The identification of subdomain boundaries is accomplished during the
computation-no a priori knowledge of the shock location is assumed. In these re-
gions, it is sufficient to solve a reduced equation. Solving this reduced equation can
significantly reduce the work in the numerical method, and/or increase the poten-
tial for parallelism. The numerics provides a means of solution in the subdomains,
and also a feedback mechanism. As a feedback mechanism, the numerical scheme
can expose regions of unexpected behavior, confirming or correcting the asymptotics-
induced subdomain boundaries. This decomposition permits the use of locally refined
meshes, allowing the concentration of computational effort in the regions where it is
needed most. Since the computational requirements are reduced, both the domain
decomposition and the use of the reduced equation are preconditionings for this prob-
lem.

The problem is presented in Section 2. Asymptotic analysis specific to this prob-
lem is discussed in Section 3. The iteration and method for detection of the subdomain
boundary is discussed in Section 4. The numerical schemes used in the method are
presented in Section 5. The method is stated in algorithmic form in Section 6. In
Section 7 computational results are presented. The particular numerical methods
discussed herein are not new; however, their combination to form this method is.

2. PROBLEM. The example here will be taken from Computational Fluid Dy-
namics (CFD) in the transonic regime. The gasdynamic equations, including viscous
effects, are used as a model in these settings. Except for very simple geometries
and boundary conditions there is no analytic solution to these gasdynamic equations,
and a numerical solution is difficult to obtain. For these reasons new algorithms are
usually developed and tested on a more tractable canonical equation. The nonlinear
parabolic equation,

(1) Plu) := s + vuy + ouy — eAu =0,

is such a canonical equation and will be the focus of this paper. This equation contains
many of the properties that make the gasdynamic equations difficult to solve; namely,
it is capable of modeling rapid variations such as shocks and boundary layers.

When the equation is nondimensionalized [4], the diffusion coeficient € is inversely
proportional to the Reynolds number. Based on free-stream conditions in transonic
flow, the Reynolds number for this problem is large. Thus, € is a small parameter in
this setting. Asymptotic analysis exploits the smallness of the positive parameter ¢
and involves study of the solution as € tends to zero (¢ | 0).

The method will be described and demonstrated by solving (1) on the spatial
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domain
2) Di={(z,y)I0<2<1,0<y <1},

where the temporal variable is restricted to 0 < ¢ < T'. Thus the entire computational
domain is

(3) Di={(z,t)0<2<1,0<y<1,0<t<T)

The solution satisfies

(4) w0, z,y) = (z,y),
for (z,y) € I, and the boundary condition
(5) u(t7 i '!/) = O‘(t7 T, y)a

for a suitable portion of 8D (namely, the inflow portion). The solution to (1) is
assumed to be uniquely defined. ,

This equation will be used as a model for shocks. When modeling shocks there
are (at least) two sets of appropriate scales—the scales associated with the original
variables (z,t), and the scales appropriate in a small neighborhood of the shock.
These are discussed in the next section.

3. ASYMPTOTIC ANALYSIS. Many problems of scientific interest have
multiple scales. These problems are characterized by the presence of distinguish-
able physical mechanisms, each associated with a temporal or spatial gauge or scale.
Efficient and accurate domain decomposition methods may be accomplished by iden-
tifying the various scales and exploiting their relationships.

The most easily tractable multiple-scale problems are those in which there are
only a small number of widely separated groups of scales and the motion on the fastest
scales has little influence on the smooth part of the solution. An identifying feature
of this class is the presence of local regions in which the solution undergoes rapid
variation. Such regions are called boundary or internal layers, when located in the
neighborhood of a boundary or in the interior of the domain, respectively. These are
the problems that are most natural for multitasking because it is easy to decompose
the domain according to the regions of different local behavior. The method presented
here is appropriate for this class of multiple-scale problems.

Asymptotic analysis provides analytic tools to identify and utilize the multiple
scales. The relative importance of any two physical processes in a given domain may
be measured by the ratio of the corresponding scales; thus, the various scales may
be ranked by a set of dimensionless parameters, the ratios of scales. When the ratio
of two scales is a large or a small number, then it often happens that one of the
competing mechanisms is dominant in most of the domain. For example, in laminar
duct flow with large Reynolds number the effects of viscosity may be ignored except in
a neighborhood of the shock and boundary layers. The scales of the various competing
processes (and, therefore, the relative magnitudes of the dimensionless parameters)
usually change as the phenomenon evolves.
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The scales for Equation (1) are for the convection terms wu, and ou,, and for
the diffusion term eAu. Competition between convection and diffusion is crucial
to the understanding of fluid flow, and the determining which of these is dominant
can be made by examining the relationship between their scales. When modeling
transonic flow, except in regions of rapid variation such as in shocks and boundary-
layers, convection dominates diffusion. Asymptotic analysis is used to exploit these
physical properties, providing the theoretical basis for a domain decomposition. The
analysis identifies the following two types of subdomains: regions where the solution
is smooth, where a reduced equation may be solved; and regions of rapid variations,
such as in a neighborhood of a shock, where the full equation must be solved.

Since the behavior of w as € | 0 is of interest, it is natural to first study the
solution of the reduced equation

(6) PoU] = U, + UU, + oU, = 0,

obtained by setting ¢ = 0 in Equation (1). Weak solutions U are sought for (6)
with data (4-5). In order that U be uniquely defined, it is necessary to impose
an entropy condition [5]. Suppose that U has a single shock. That is, suppose
U is the solution to (6) subject to (4-5) that is discontinuous only along a curve
(t,z,y) = (¢,['1(t),T2(¢)). For small ¢, this curve lies in the shock-layer region of the
solution to the full problem. The size of this region tends to zero as € | 0. Analytic
methods for choosing I' = (I'y, I';) are discussed by Whitham [6], Kevorkian and Cole
[7], and others. Since I' is not needed for the computations, methods for choosing I"
will not be discussed here.

The regions where U is a good approximation to u are defined by presenting
functions which bound the difference U — u. These bounds are small except in an
asymptotically small neighborhood of the shock. The bounds, based on Howes [8]
are

H

(7 lu—U| = O(p exp[—d*(z,1)/'/?]) + O(e)
when the derivatives of U are continuous across I', and
(8) [~ U] = O(u exp[~d*/€/%]) + O(¢"/%6 exp[—d/e'/?]) + O(e)

in the more general case when the derivatives of U are not continuous across I'. Here
d(t,z,y) = distance between (z,y) and (I'1,I';) at time ¢, and p and § are upper
bounds on the magnitude of the difference of the values of U and the magnitude of
the difference of the normal derivative of U across I', respectively.

It is now reasonable to utilize the error bounds to make the definitions of the
subdomains more precise. The internal layer is the following neighborhood of I':

(9) Dr, = {(,y,0|(z,9,%) € D, [(w = T7* P + (y = T3 )1* < A(9)}-

Here A(t) < Kn(t)e!/*In*/?¢ is the width of the internal layer at time t (K is a
constant independent of €). The outer region is the complement of Dy, with respect
to D, that is,

(10)  Dor={(z,4,)l(z,y,t) € D, [(= = IT*)" + (y — T3")*I/* > A(t)}.
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The upper bound on the size of the internal layer is based on the exp[—d?/e'/?] term in
the error bounds (7-8). The solution in the outer region is used to provide boundary
data for the problem in the internal layer.

The bounds (7-8) motivate a preconditioning for the problem in Dog. The bounds
may be used to justify solving (6) in place of (1). In addition, relations (7-8) provide an
error bound if diffusion (artificial or implicit in the numerical scheme) is incorporated
into the solution process of either (6) or (1). Thus, the numerical method for Dgpr
may be chosen from the wide variety of methods designed for hyperbolic equations
9, 10, 11, 12].

Asymptotics identified two subdomains and provided preconditioners for the
problems within the subdomains. The preconditioner for the full equation in Dyy
is the use of the local scale Z = z/e. This scale allows the diffusion to be modeled
accurately, hence the grid is fine enough to resolve the shock. It is reasonable to use
this scaling in the method, because computationally the internal-layer subdomain is
of width O(e). The preconditioning in the outer-region subdomain Dgp is to solve
(6) in place of (1). Other asymptotic-induced preconditionings are possible. For
examples of these, see [13, 14]. In the next section, the domain decomposition and
preconditionings are combined with a functional iteration to form the computational
method.

4. DISCUSSION OF THE METHOD. An iteration is formed by lineariz-
ing the reduced problem. Each step of the iteration requires the solution of (6) in
the outer-region subdomain, and (1) in the neighborhood of a shock. Once the it-
eration has been described, the boundary detection scheme is presented. A method
for handling the nonlinear behavior of solutions to Equation (6) is necessary to im-
plement the domain decomposition. The method used here is an iterative method.
This method provides feedback for the asymptotic-induced adaptive refinement. Af-
ter the first iteration, a guess at the appropriate location of the refined regions can be
made. The solution on the coarse mesh may be unreliable; thus, a refinement based
on the coarse-mesh solution may result in errors in the location of the subdomain
boundaries. The iteration coupled with the adaptive refinement would then allow the
correction of the location of the refined region.

4.1. Iteration. In general, each step of the iteration requires the solution of a
linear convection equation in the outer-region subdomain, followed by the solution
of a nonlinear convection-diffusion equation in the internal layer. The convection
equation

(11) UM+ UrUg T 4+ ol =0

is formed by lagging the convection coeflicient of (6).

Solutions to the reduced equation are poor approximations to the solution of the
full equation in regions of large gradients, such as in the internal-layer subdomain.
Thus, the full equation '

(12) Utk+1 + Uk+1Uf+1 + UU§+1 . eAUk+1 =0
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is solved in the internal layer at each iteration (for each k). Dirichlet boundary data
for the internal-layer subdomain is provided by the solution of (11) in the outer region.
Other boundary conditions are possible [15].

The boundary of the internal-layer subdomain is allowed to change during the
iterations. Denote the outer-region subdomain for iterate U*** by D%, and denote
the complement of Dfp with respect to D by D%, That is, U*! is obtained by
solving (11) in D% g, then solving (12) in D%, .

The temporal variable may need to be partitioned into several regions. For ex-
ample, it is possible for the method to diverge if T' is too large. In addition, the
iteration requires that the solution be stored for the entire temporal region, possibly
requiring too much memory. These problems are resolved by partitioning time into
@ sections 0 < Tp < Ty < ... < Ty = T. The iteration will be performed on the
partition Qg = (Ty-1,T] X II of the domain, using the solution at time t = T},_; from
the iteration on {14_; as the initial condition.

The theoretical basis for convergence of the iteration applied to this domain
decomposition problem in one dimension is discussed in [2]. In addition, the iteration
for systems of equations may be found in [3].

4.2. Boundary Detection. The location of the internal-layer subdomain is
determined during the course of the iteration. This boundary detection scheme in
a neighborhood of a shock is based on the size of the first partials of the solution
with respect to the spatial variables. Both the physical and analytic motivation will
be described here. The theoretical motivation of this technique is based on the error
bounds derived for the one-dimensional case [2]. Implicit in this argument is that the
computed solution be reliable.

Shocks form in regions of merging characteristics. (By merging, it is meant that
the characteristics become asymptotically close). The boundary conditions imposed
on the problem will be inflow conditions on both the z = 0 and z = b boundaries;
thus, the characteristics are traveling in the direction of increasing z from z = 0, and
in the direction of decreasing # from z = b. These will merge somewhere inside D,
forming a shock. The merging of the characteristics stabilizes the shock, and keeps
it from dispersing. The solution to Equation (1) is constant along its characteristics;
thus, where the characteristics merge, the solution will have large gradients. Based
on this analysis, the subdomains used in the numerical method are

(13) Dgg = {(z,0)|(z,%) € D, lufl + |uy| 2 TOL},
and,
(14) Diy, = {(z,1)|(2,1) € D, Jug| + ug| < TOL}.

Heuristics, based on both accuracy and efficiency, are used to choose TOL. If
TOL is too small, the internal-layer subdomain will be too small, and the data pro-
vided at the boundary of the internal-layer subdomain will have large perturbations
as compared to the desired solution. Thus, accuracy will suffer when T'OL is too
small. If TOL is too large, the internal-layer subdomain will be too large, and the
computational mesh will be refined in regions where the solution is smooth, creating
excess work.
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5. COMPUTATIONAL DETAILS. In this section the choice of the numer-
ical schemes and some of the computer-science related issues are discussed. Both
the numerical schemes and the choice of data structures allows the exploitation of
parallelism.

The asymptotic analysis has provided a means to precondition the numerical
problems. Because the sub-problems are well conditioned, the choice of numerical
schemes may be made from a variety of standard methods. This is not usually the
case. The class of problems for which the new algorithm is applicable are notoriously
difficult to solve, and only a small number of schemes could be employed for their
solution (prior to preconditioning). Since the sub-problems are well conditioned,
numerical schemes used in the method presented here can be chosen based on criteria
such as efficiency or the potential to exploit parallelism.

The solution in DYy is obtained using a strictly upwind explicit finite difference
scheme on a tensor-product grid (e.g. equally spaced in = and y). Once a grid point
has been identified as needing refinement by measuring the derivatives of the solution
there, then each of the four grid rectangles adjacent to the grid point are included
in the refined region surrounding the shock. These grid squares are refined based on
the scaled coordinates; hence, the spacing within each of the coarse grid rectangles is
Az, = eAzogr and Ay, = eAyor in the two spatial directions. Since the accuracy
in solving in the internal-layer subdomain should be the same as in D%, the temporal
variable is also stretched, so Aty = eAtog.

The sub-problem in the internal-layer subdomain requires the solution of a parabolic
PDE subject to boundary data provided by the solution in the outer region. The
computational domain in Dy, has an irregular boundary, but is composed of many
non-overlapping rectangular regions, each of which is composed of a tensor product
grid. The mesh for these rectangles has been scaled; therefore, there are no large
gradients in the solution on the refined mesh; hence, the computations are not sensi-
tive to the particular difference scheme used to solve the partial differential equation.
An explicit finite difference method was chosen to solve the equation. The scheme
used was a combination of explicit strictly upwind discretization for the convection
terms with a centered discretization for the diffusion in D¥,. Other methods could
be employed to obtain the solution in the subdomains [16, 17].

The data structures for D¥; are a rectangle adjacency list plus the rectangular
regions with some buffer regions. By including a buffer region of data from adjacent
refined rectangles, the number of times a synchronization must occur is reduced while
increasing the amount of data communicated at each synchronization and increasing
the amount of redundant computations. The domain changes between iterations.
Using a list of refined rectangles allows for simple creation and deletion of sections of
the refined domain. Bi-linear interpolation is used to initialize refined regions. Values
computed on the refined mesh are injected into the coarse mesh.

6. OUTLINE OF THE ALGORITHM. The stopping criteria is based on
the norm of the difference between iterates

(15) ’52 = ”uk - ukﬁl”Tq = Z [uk(Tm 3) - uk~1(Tq’ S)I’
xeP
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where the sum is over the set P of the spatial values of the discretized solution at
time ¢ = T;. When the norm is less than some user specified tolerance, then the
iteration is assumed to have converged. The algorithm requires an initial guess which
must satisfy the boundary conditions (4-5). For these experiments, the initial guess
is simply taken as the solution of the beginning of the temporal region

uo(t) Z, y) :’u(Tq-—l; z, y)

for Ty_y <t < T,. As a summary, the numerical method is outlined in the algorithm
below.

1. Initialize.
A. Set temporal partition counter to ¢ = 1.
B. Apply initial data (5) to the solution.
II. Determine the solution on temporal partition q.
A. Determine initial guess u® for Q.
B. Initialize iteration counter k = 1.
C. Solve Equation (11) to obtain u* in D% 4.
D. Determine 8D%, (see (13)).
1. Where 8D}, has receded, remove refined rectangles.
2. Where 8D¥, has advanced,
add refined rectangles with initial data from bi-linear interpolation.
E. Solve Equation (12) to obtain u* in D¥,.
F. Inject values obtained in D¥, into coarse mesh.
G. Compute the norm &F according to Equation (15).
1. If «* is too large, increment k and go to Step C.
2. Else move to next temporal partition.
a. Restart. Solution at ¢ = T, is initial condition for Q.
b. Increment ¢ and goto Step II.

Algorithm 1 Iteration with Restart.

7. EXPERIMENTS. The experiment demonstrating the method is to solve
the 2-dimensional extension of Burgers Equation

U + Uy + OUy — €Au = 0,
on the unit square in space for 0 < ¢ < 0.25. The boundary and initial conditions,
(16) u(t, z,y) = 2 — 4o — 2zy + 2y,

were chosen so that the solution is initially smooth, and so that a shock develops at
some finite time that is not aligned with the grid.

The results of computations on an Ardent Titan are presented in Figures 1-5. The
solution is computed using the adaptive refinement, and projected onto the coarse
mesh for visualization. The coarse-mesh squares inside the refinement are elevated
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and shaded in the refined region figures. (There is no refined region at time ¢ = .10).
These figures show that the refined region changes shape as the solution is marched
in time. The refined region also changes shape between iterations (however, this is
not shown). Comparisons of the solution with and without the adaptive refinement
demonstrate that both the shock location and the profile of the shock are modified
by the refinement.

Fig. 1. Solution at t = .10.

This implementation is meant as a demonstration of the viability of the method,;
thus, the parallelism has not been exploited. Comparison of the computed solution to
an analytic solution, and testing the efficiency of the method in a parallel computing
environment are currently being researched.

8. CONCLUDING REMARKS. Parallelism may be exploited at several lev-
els in the implementation of Algorithm 1. Domain decomposition provides large-grain
parallelism. Medium-grain parallelism may be exploited by solving on each of the data
structures in Djz asynchronously. The domain decomposition is independent of the
choice of numerical schemes for the subdomains; thus, schemes may be chosen which
are a source of smaller-grain parallelism.

In this paper, asymptotics and numerics have been blended to form a new compu-
tational method suitable for a variety of difficult simulations arising in fluid dynamics
and chemistry. The method has potential to exploit a large amount of parallelism
and provides high accuracy. Asymptotic analysis provided a theoretical basis for the
domain decomposition, identifying two types of subdomains: smooth outer regions,
and an internal-layer subdomain with a shock.
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Fic. 2. Solution at t = .20.
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Fi1a. 4. Solution at t = .25.
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